Mathématiques

Question

Déterminer une fonction affine f telle que f(0)=5 et f(2)=3
Tracer dans un repère la représentation graphique de f.

Même questions avec f(-2)=1 et f(3)=6

Urgent! Merci

2 Réponse

  • f ( 0 ) = 5 
    et f ( 2 ) = 3 
    Une fonction affine est une fonction de la forme ax + b
    On note que pour f(0) = 5 on a x = 0 
    on aura donc a * 0 + b = 5
    On note que pour f(2) = 3 on a x = 2 
    on aura donc a * 2 + b = 3

    Tu as donc un système d'équation à deux inconnus : a et b noté ainsi 
    a*0 + b =5
    a*2 + b = 3
     on résout la première équation : 
    a*0 + b = 5
    b = 5 
    Puis on remplace b par le résultat ( 5 ) dans la deuxième équation:
     2a + b = 3
    2a + 5 = 3
    2a = 3 - 5 
    2a = -2
    a = -1

    On sait que a = -1 et b = 5 et qu'une fonction affine à la forme f(x) = ax + b : 
    On aura donc f(x)  = -1x + 5


    Pour f(-2) = 1 et f(3) = 6 
    Une fonction affine est une fonction de la forme f(x) = ax + b
    On note que pour f(-2) = 1 on a x = -2
    on aura donc a*(-2) + b = 1
    On note que pour f(3) = 6, on a x = 3
    on aura donc a * 3 + b = 6

    Tu as donc un système d'équations à deux inconnus : a et b noté ainsi 
    -2a + b = 1 
    3a + b = 6
    on isole b dans la première équation ainsi on a : 
    b = 1 + 2a
    3a + b = 6
    on remplace b dans la deuxième équation par l'expression de la première on a donc : 
    b = 1 + 2a
    3a + 1 + 2a = 6
    on résout la deuxième équation 
    5a + 1 = 6
    5a = 6 - 1 
    5a = 5
    a = 1
    On sait donc que a=1
    on remplace a dans la première équation pour trouver b donc on a : 
    b = 1 + 2*1
    b = 3
    Donc tu sais que a = 1 et b = 3 et que ta fonction affine est de la forme f(x) = ax + b donc tu auras f(x) = 1x + 3



  • f fonction affine donc f(x) = ax + b 
    f(-2)= -2a + b = 1 
    f(3)= 3a + b = 6
    5a = 5 d'ou a = 1
    b = 3
    f(x) = x + 3 
    C'est la droite d'équation f(x) = x + 3 
    avec les points de coordonnées (-2 ; 1) et (3 ; 6) 

Autres questions